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ABSTRACT 

A cantilevered, continuous pipe conveying fluid at a constant velocity 

is studied analytically. It is shown that sufficiently small velocity- 

dependent forces, such as internal and external damping, as well as 

Coriolis forces, may have a destabilizing effect. It is also demonstrated 

that the Galerkin method with a two-term approximation may lead to erroneous 

results when velocity-dependent forces exist in the system. 
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1. Introduction 

Some technological demands of recent years have brought into focus the 

importance of stability investigations of elastic systems subjected to non- 

conservative forces, i.e. forces which do not possess a potential. Missiles, 

aircraft and various elements of high-performance launch vehicles may give 

rise to this type of problems. For example, a flexible missile under end 

thrust must be investigated for possible overall flutter-type instability. 

In this case one may idealize the system by a free-free, slender beam, 

subjected at one end to a follower force, and determine the critical thrust. 

One of the principal features of these problems is that the static 

approach is usually inadequate for stability analysis, and a dynamic 

stability criterion must be employed, i.e. the actual motion of these 

systems must be studied [1,2,3,4,5,6] . * 

In 1952 Ziegler [7], by means of an example, indicated that linear 

viscous damping forces in a nonconservative elastic system with two degrees 

of freedom may have a destabilizing effsct. 

provided an impetus for further studies, and subsequently several Fnvestiga- 

tors [4,8,9,10,11] explored this phenomenon in more detail. 

Nemat-Nasser and Herrmann [Il l  have proved that the critical flutter load of 

an undamped (no velocity-dependent forces exist) nonconservatfve, discrete, 

linear system is an upper bound for the critical flutter load of the same 

system when sufficiently small velocity-dependent forces are also present. 

Therefore, it was concluded that in a general nonconservative system with 

N degrees of freedom not only slight viscous damping but all sufficiently 

T h i s  remarkable discovery 

For example, 

* 
Numbers in brackets refer to the Bibliography at the end of this paper. 
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small velocity-dependent forces ,  such as C o r i o l i s  fo rces  on v i b r a t i n g  p ipes  

conveying f l u i d ,  o r  o ther  gyroscopic forces ,  may have a d e s t a b i l i z i n g  

e f f e c t  . 
For a continuous system, however, which possesses  an i n f i n i t e  number 

of degrees of freedom, no such theorems are as y e t  es tab l i shed .  To study 

the  e f f e c t  of viscous damping fo rces  i n  such systems most i n v e s t i g a t o r s ,  i n  

genera l ,  reduce f i r s t  the  continuous system t o  a d i s c r e t e  one by means o f ,  

f o r  example, t h e  Galerkin method, and then study t h e  reduced, d i s c r e t e  

system [4,12,13]. But, as w a s  shown i n  [ll], a d i s c r e t e  system does,  i n  

fac t ,  always have t h i s  property,  except i n  very p a r t i c u l a r  cases. There- 

fore ,  by t h i s  approach one does not  know whether t he  o r i g i n a l  continuous 

system a l s o  e x h i b i t s  t he  same behavior o r  whether i t  i s  produced only 

through the  reduct ion procedure. 

The purpose of t h e  present  study i s  t o  show t h a t  t he  presence of 

s u f f i c i e n t l y  small velocity-dependent fo rces  i n  a continuous e l a s t i c  

system subjected t o  follower fo rces  does, indeed, have a d e s t a b i l i z i n g  

e f f e c t .  To t h i s  end, a cant i levered ,  continuous p ipe  conveying f l u i d  a t  a 

cons tan t  v e l o c i t y  is  considered. The i n t e r n a l  and ex terna l  viscous damping 

fo rces  are a l s o  included, and then it i s  proved t h a t  t h e  c r i t i c a l  f l r i t t e r  

load of  t h e  system may be reduced by almost 50% for some combinations of 

t h e s e  velocity-dependent forces .  

Although t h e  problem of a cant i levered  v i s c o e l a s t i c  p ipe  conveying 

f l u i d  has numerous p r a c t i c a l  appl ica t ions ,  i n  the  present  study i t  i s  a l s o  

used as a model t o  demonstrate the remarkable phenomenon of d e s t a b i l i z i n g  

e f f e c t  of  s u f f i c i e n t l y  small velocity-dependent forces  i n  a nonconservative, 

continuous system without reducing the system t o  a d i s c r e t e  one. (The 
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destabilizing effect of Coriolis forces in torsional flutter of a 

cantilevered continuous bar was first discussed by Nemat-Nasser and 

Herrmann in [14].) Moreover, the method of analysis, which effectively 

reduces a complicated non-self-adjoint boundary value problem to a simple 

frequency analysis by utilizing fully the fact that the velocity-dependent 

forces are sufficiently small, is itself of some value and may be employed 

for the stability analysis of one-, two-, or three-dimensional continuous 

nonconservative systems. 

In the final portion of this work, we shall use the opportunity to 

test the accuracy of the widely used Galerkin method with a two-term 

approximation. 

method, for the case when the equations of motion of the system also contain 

mixed time and space derivatives, has as yet been carried out. Therefore, 

there exists no - a priori certainty that the method of Galerkin, especially 

with a two-term approximation, should necessarily yield sufficiently 

accurate results, particularly when the effect of Coriolis forces, in the 

reduced discrete system, has to be included through a nonsymmetric marrix. 

In the present study, critical flutter loads of the system, €or small 

velocity-dependent forces, and also for large values of Coriolis forces, 

are obtained by using the Galerkin method with a two-term approximation. 

The results are then compared with the exact solution. It is then shown 

that the two-term approximation yields sufficiently accurate values for the 

critical flutter load only if the velocity-dependent forces are small. 

That is, for large values of Coriolis forces the critical load obtained by 

the Galerkin method with a two-term approximation may be greatly in error. 

It is to be noted that no such analysis of this approximate 
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2 .  Statement of the Problem 

We consider a cantilevered, uniform pipe of length L and internal 

cross-sectional area A,  conveying fluid at a constant velocity U. A nozzle 

whose opening is n times smaller than A is placed at the free end of the 

system, as is shown in Figure 1. 

We shall assume that the material of the pipe obeys a stress-strain 

relationship of the Kelvin type, i.e. 

0 = E6 + (1) 

where E is the modulus of elasticity and 7 is the coefficient of viscosity. 

Under the assumption of plane sections remaining plane, the moment-curvature 

relationship, for small deformations, is 

where M is the resultant moment at section x and at time t, I the moment of 

inertia, and y the transverse deflection of the pipe. With u denoting the 

displacement in the x direction, and z the distance of each fiber from the 

neutral axis, we also have 

2Y 
ax u = - 2  au e = -  Mz Q = -  

I '  ax 9 

The equation of motion may now be stated as 

(3)  

where p is the resultant lateral force exerted on the pipe. 

force may be decomposed into three parts. 

inertia forces and is given by +(m + q) 
pipe per unit of length, and 4 the mass of the fluid contained within the 

This lateral 

The first part is due to the 

d2 , where m is the mass of the 
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pipe. The second pa r t  i s  due t o  Cor io l i s  acce lera t ion  and is given by 

+ 2 q U  -&- , and f i n a l l y ,  t h e  t h i r d  pa r t ,  which is  due t o  equivalent  

compressive force  induced by the  f l u x  of momentum out of t h e  pipe,  and is  
a2 

given by %U2n $ . Therefore, t he  equation of motion, (4), becomes 

and s u b s t i t u t i o n  from (l), (Z), and (3) i n t o  ( 5 )  f i n a l l y  y i e l d s  

I f  w e  include a l s o  the  e f f e c t  of ex terna l  damping i n  the  form K 8 , where 

K i s  a cons tan t ,  and introduce the  following dimensionless quan t i t i e s :  

then w e  ob ta in  

To study the  e f f e c t  of small viscous damping forces  and Cor io l i s  

forces ,  we now l e t  

6' = v6 , Y '  = 2vy, and /& n = vp , 

where v is  a s m a l l  parameter. The equation of motion, ( 6 ) ,  and t h e  boundary 

condi t ions  a t  5 = 0,  1, may then be wr i t t en  as 
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In the sequel, we shall study the stability of system (7) when v is 

sufficiently small. 
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3. S t a b i l i t y  Analysis 

iw7 
W e  l e t  y = $(s)e ; i = .$-i- , and reduce (7) t o  t h e  following 

boundary va lue  problem 

where prime denotes d i f f e r e n t i a t i o n  with respec t  t o  5.  

i t  - W e  then set .Qr = e ; X = X + i v a  , and ob ta in  

(1 + i ~ a ) ~  + l? (A + iva)”- (u2 + ivw [6 (A + i ~ a ) ~  + 

+ 2BF(X + iva)  + 2Y] = 0 , ( 9  1 

which is  t h e  c h a r a c t e r i s t i c  equat ion of system (8). 

series of  powers of V ,  w e  are l e d  t o  

Expanding (9) i n  a 

{A4 + PA2- u?} + ( i v )  @ah3 + 2PXa + w(6A4 + 2BFA + 2y) )  + 

Next, w e  equate  terms of l i k e  powers i n  v ,  neglec t ing  O(v2) and 

h igher ,  and f i n a l l y  arrive a t  

- 
; ? , = h + i v a .  6A4 + 2BFh + a 

21(2X2 + P) a = - w  

4 

The s o l u t i o n  t o  system (8) may now be  w r i t t e n  as f ( 5 )  = 7 A 4 e i j 5  , where 
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A 

conditions at f = 0 , l .  

linear, homogeneous equations: 

; j = 1,2,3,4, are constants which can be obtained from the boundary 
j 

That is, they must satisfy the following four 

4 

4 

4 
1 i?A.eXj = o , 
j =I I 

1 1  

b 

System (11) has non-trivial solutions if and only if the determinant 

of the coefficients is identically zero, i,e. the frequency equation is 

This expressCon may be hritten with the aid of (10) as follows, 

after expanding it in terms of powers of v,  and neglecting 0(va), 
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A E {e+ 2 d +  Zu? ch 1, cos &+ p w  sh A, s i n  &} - 

The f i r s t  tern Ir; brzceii in equation (13) ,  i s  the  frequency equat ion 

when v = 0, and the  second term, t o  the  f i r s t  o rder  of approximation i n  V ,  

i n d i c a t e s  the e f f e c t  of small viscous damping forces  and C o r i o l i s  fo rces .  

For v = 0, we ob ta in  the  frequency equat ion of a purely e l a s t i c  can t i l eve red  

beam subjected to a compressive force which s t a y s  tangent t o  t he  a x i s  a t  t he  

f r e e  end [1,4]. The c r i t i c a l  value of t h e  load, i n  t h i s  case, i s  

Fe = 20.05, which was f i r s t  computed by Beck [l]. 

For non-zero but s u f f i c i e n t l y  small va lues  of v and f o r  s m a l l  F ,  a l l  

t h e  r o o t s  of equation (13) a r e  located t o  the  l e f t  of the  imaginary a x i s  i n  

t h e  complex i w  plane.  As w e  increase F, a t  least  one of t hese  r o o t s  
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d '  approaches the imaginary axis, and for a certain value of F ,  say F 

equation (13) yields one purely imaginary root iw = iruc. 

increase F beyond this critical value F 

becomes complex with negative imaginary part, and the system oscillates 

with an exponentially increasing amplitude. Therefore, for given values 

of 6, B and y, we shall seek critical values of w = w 

If we now 

one of the roots of (13) d '  

(real), and F = Fd 
C 

which identically satisfy (13). This is illustrated in Figure 2 where, 

for 6 = 1 , B = 1 , and y = 0, real (Al ) and imaginary (-& ) parts of A 

are plotted against the values of u?. Similar results may be obtained 

for other values of 6, 0, and y. 

It may also be of interest to establish the destabilizing effect of 

Coriolis forces, internal viscous damping forces, and external viscous 

damping forces independently. 
F ?  

0 and with yd = - obtain, from To this end, we let 6 = y = 0, B = 1, ri3 
equation (13), yd = 1.78. 

load is obtained to be yd = 1.107. 

yd = 2.035, which is equal to the critical load of the system when no 

velocity-dependent forces are present. That is, although sufficiently 

Similarly, for B = y = 0 and 6 = 1, the critical 

However, for B = 6 = 0 and y = 1 we get 

small Coriolis forces and internal viscous damping forces have a 

destabilizing effect in this continuous system, external viscous damping 

forces do not have the same effect. 

The combined effect of velocity-dependent forces on the value of the  

critical parameter y 

the parameter vd is plotted against B / 6  for various values of y. 

horizontal dashed line in these figures represents the critical value of 

yd when no velocity-dependent forces exist and the cantilevered column is 

= - is shown in Figures 3 and 4. In these figures 
d r i d  

The 
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subjected to a compressive follower force at the free end [l]. 

It is important to note that the stability curves shown in Figures 3 

and 4 have a finite discontinuity at v = 0. 

we have Fa = F: = 20.05, for v = O', the critical value of. Fa is, in 

general, less than 20.05. 

That is, although for v = 0 

It may also be of interest to explore the order of magnitude of v 

for which the destabilizing effect of velocity-dependent foFces still 

exists. 

values of u, and F for which equation (12) is identically satisfied. We 

This may be accomplished by considering v large and seeking 

note that, in equation (12), ; j = 1,2,3,4, are defined as functions 

of w and the other parameters of the system through equation ( 9 ) .  
j 

In 

order to circumvent the difficulty of solving polynomials with complex 

coefficients, we let 6 = y = 0 and put = il\ in equations ( 9 )  and (12). 

The critical values of w and F may now be evaluated employing 

computers, The computer may be instructed to obtain the roots of 

equation (9) for given parameters, and then calculate A ,  (equation (12)). 
F 3  
-6 These results are shown in Figure 5, where y 

values of /? , by a solid line. The dashed line in this figure 

= - is plotted against 
d n2 

corresponds to the critical y 

approximation is employed for the analysis. We shall discuss this in the 

when the Galerkin method with a two-term d 

following section. 

* 
In reference [l5] this problem is solved using an indirect method. 
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Ue now employ t h e  Galerkin method [4] f o r  t h e  a n a l y s i s  of system 

1 2  

(7). 

[~,(t)] , obtained by so lv ing  t h e  following eigenvalue problem 

To t h i s  end, we consider a set of orthonormal 1163 e igenfunct ions ,  

' q r - - W n T n = O s  &Tn a 

= O  ; at  c = O ,  'Tn 
P- 

Tn dc 

W e  then l e t  y = ), %(T) qn(c), s u b s t i t u t e  it i n t o  t h e  f i r s t  equa t ion  i n  

n=l 

(7), mul t ip ly  both s i d e s  of t h i s  equation by 6y = 1 cp,(s) 6 % ( ~ )  , and 

m=1 

i n t e g r a t e  t h e  r e s u l t  from zero  t o  1 with r e spec t  t o  5 t o  o b t a i n  

where 

= cosh Amg - cos XI?$ - a:t,(sinh X g - s i n  X 5 )  , 
%I m m m m 

2 Am = w m' 
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*l 1 ; f o r m = n  

System (15) is a set of non-self-adjoint,  l i n e a r ,  second order ,  

homogeneous, o rd inary  d i f f e r e n t i a l  equations which admit so lu t ions  of t h e  

form (r, = A eim. To ob ta in  t h e  c r i t i c a l  va lues  of pa, w e  seek condi t ions  

under which u) becomes complex wi th  negative imaginary p a r t .  

m 

System (15), 

however, c o n s i s t s  of i n f i n i t e  number of equations each wi th  i n f i n i t e  

number of terms. This, t he re fo re ,  leads t o  a determinant which possesses 

an i n f i n i t e  number of rows and columns. 

I n  p r a c t i c e ,  it i s  q u i t e  coumon t o  l e t  m,n = 1,2 i n  equations (15) 

and reduce t h i s  system t o  only two l i n e a r ,  homogeneous d i f f e r e n t i a l  

equations [ 4 ] .  Hence, t h e  c h a r a c t e r i s t i c  equat ion becomes a polynomial 

of degree f o u r ,  which can e a s i l y  be solved. 

renders  a t  least one r e a l  roo t  and a l l  t h e  o the r  r o o t s  complex wi th  

p o s i t i v e  imaginary p a r t s ,  a r e  then taken t o  be approximation t o  t h e  

c r i t i c a l  f l u t t e r  loads.  

The va lues  of p, which 

In  t h e  present  case,  using t h e  above approximation, w e  ob ta in  t h e  

approximate c h a r a c t e r i s t i c  equation as 
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where 

%1 = 1.99999 ; 3, = 0.759489 ; +, = -4.75939 ; = 1.99989 

b,, = 0.858243 ; bl, = 1.87386 ; b,, = -11.7429 ; b,, = -13.2945 

q2 = 12.3624 ; ( 0 2 ~  = 485.519 ; 

For s u f f i c i e n t l y  small values  of v ,  we may neglec t  terma assoc ia ted  

wi th  v2 i n  equat ion (17), and using Routh-Hurwitz cr i ter ia  [17], c a l c u l a t e  

approximate values  of t h e  cr i t ical  load 

approximate f l u t t e r  loads are compared with t h e  exact values  obtained i n  

t h e  previous sec t ion .  From t h i s  t a b l e  w e  observe t h a t ,  f o r  s u f f i c i e n t l y  

s m a l l  v ,  t h e  Galerkin method with a two-term approximation y i e l d s  very 

accura te  r e s u l t s .  We note  also t h a t ,  f o r  v = 0, t h i s  approximate method 

g ives  = 20.15 as compared with the exact  c r i t i ca l  load, = 20.05. 

= ydn2. In  Table I these  

The above conclusion, however, does not  imply tha:, f o r  w f i n i t e ,  t h e  

approximate method should necessar i ly  give sufficiently accura te  results. 

I n  f a c t ,  as i s  shown i n  Figure 5, for 6 = y = 0, t h e  c r i t i c a l  f l u t t e r  load 

obtained by t h e  approximate method (dashed l i n e  i n  Figure 5)  can be 

g r e a t l y  i n  e r r o r  f o r  r e l a t i v e l y  large values  of t h e  Cor io l i s  forces .  We 

note  t h a t ,  f o r  / / '  smaller than 0.25, t h e  r e s u l t i n g  e r r o r ,  when the  

Galerk in  method with a two-term approximation i s  used, i s  less than 5% and 

decreases  as t h e  value of v decreases. 
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It may be of interest to determine whether similar discrepancies 

may also result for large values of the internal and external damping 

forces. This analysis, however, is postponed to a future study. 



16 

REFEBENCES 

[l] H. Beck, "Die Knicklast des einseitig eingespannden," Zeitschrift 

fur angewandte Mathematik und Physfk, Vol. 3, No. 3, 1952. 

[2] H. Ziegler, "Linear Elastic Stability," Zeitschrift fur angewandte 

Mthematik und Physik, Vol.  4, '1953, pp. 89-121, 168-185. 

[3] H. Ziegler, "On the Concept of Elastic Stability," Advances in 

Applied Mechanics, V o l .  4, edited by H, I.. Dryden and T. von 

Karman, Academic Press, Inc., New York, N.Y., 1956, pp. 351-403. 

[4] V. V. Bolotin, Nonconservative Problems of the Theory of Elastic 

Stability, Moscow, 1961; English translation published by Pergamon 

Press, Inc., New York, N.P., 1963. 

[5] G. Herrmann and R. W. Bungay, "On the Stability of Elastic Systems 

Subjected to Nonconservative Forces," Journal of Applied Mechanics, 

V o l .  31, 1964, pp. 435-440. 

[ 6 ]  S. Nemat-Nasser and G. Herrmann, "On che Stability of EquSl iSpim 

of Continuous Systems," Tech, Report No. 65-1, March 1965, North- 

western University, The Tech, Znst., Depart, of C E., Structural 

Hech. Lab., Evanston, Illoa to be published in Ingenieur Archiv, 

[7] H. Ziegler, "Die Stabilit'AtrkrfterLen der Elastomechanik," 

Ingenieur-Archiv, Vol .  20, 1952, pp. 49-56. 

[8] G .  Herrmann and I. C.  Jong, "On the Destabilizing Effect of Damping 

in Nonconservative Elaotic Systems," J. Appl. Mech. , Vol. 32, .1965, 

pp. 592-597. 



17 

G .  Herrmann and I. C. Jong, "On Nonconservative Stability Problems 

of Elastic Systems with Slight Damping," J. Appl. Mech., in press. 

H. Leipholz, 'cber den Einf luss der D'bmpfung bei nichtkonservat iven 

Stabilit3tsproblem elastischer St'bbe," Ingenieur-Archiv, Vol. 33, 

1964, pp. 308-321. 

S .  Nemat-Nasser and G .  Herrmann, "Some General Considerations 

Concerning the Destabilizing Effect in Nonconservative Systems," 

Zeitschrift fir angewandte Nathematik und Physik, in press. 

J. M. Hedgepeth, B. Budiansky and R. W. Leonard, "Analysis of 

Flutter in Compressible Flow of a Panel on Many Supports," Journal 

of Aeronautical Sciences, Vol. 21, No. 7, 1954, pp. 475-486. 

D. J. Johns and P. C. Parks, "Effect of Structural Damping on 

Panel Flutter," Aircraft Engineering, Oct. 1960, pp. 304-308. 

G .  Herrmann and S.  Nemat-Nasser, "Instability Modes of Cantilevered 

Bars Induced by Fluid Flow through Attached Pipes," to be published. 

R. W. Gregory and M. P. Paidoussis, Wnstable Oscillation of Tubular 

Cantilevers Conveying Fluid, unpublished manuscript. 

R. Courant and D. Hilbert, Methods of Mathematical Physics, 

Interscience Publishers, Inc., New York, N.Y., 1953. 

E. J. Bouth, Advanced Dynamics of a System of Rigid Bodies, Dover 

Publications, New York, N.Y., 1955. 



18 

Table 1 

6 Y 8 

0.0 

1.0 

0.0 

1.0 

2.5 

5 .0  

0.0 

1.0 

2.5 

q n  

0.0 

1.0 

-.-. 

~- 

G a l  erkin 
Method 1 Exact 

0.0 1.0 

0.0 
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0.0 1;o 

1.0 

1.082 

1.447 0.0 

0.0 1.0 1.73 - 1  1.729 
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1 . 155 1.133 1.0 1.0 

1.0 1.0 
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1.925 1.926 
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1.0 1.0 

10.0 1.426 1.414 
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1.0 10.0 
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15.0 10.0 1.0 1.940 

1 895 1 . 902 1 .0  100.0 

100.0 1.0 1.926 1.930 

1.960 1.964 

1.996 2.000 
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